
ASPLinux | DOWNLOAD Page1

contact

feedback

 HOME PRODUCTS TRY ONLINE DOWNLOAD DOCS SUPPORT FORUM BUY NOW ABOUT

 +ASPLinux +English

 ASPLinux

 EspressoDownload
 FTP and HTTP
download
 Release notes
 User Beancounter patch
 Snapshots history

 ASPcomplete

 Anonimous CVS
 FTP Download
 Release notes

Global sites:

+Russia

User beancounter patch
Andrey V. Savochkin, saw@asp-linux.com
31 July 2000

Contents
1. Overview
2. General architecture principles
3. Current status
4. Comments about individual resources

4.1 Control for virtual space and resident pages
4.2 Accounting for resources consumed by sockets

5. Development plans
6. API

6.1 Calls
6.2 Constants
6.3 How to form a piece of code dealing with resource limits

7. Testing the patch
8. Credits

1. Overview

This patch provides accounting and allows to configure limits for
user's consumption of exhaustible system resources. The most
important resource controlled by this patch is unswappable
memory (either mlock'ed or used by internal kernel structures
and buffers). The main goal of this patch is to protect processes
from running short of important resources because of an
accidental misbehavior of processes or malicious activity aiming
to "kill" the system. It's worth to mention that resource limits
configured by setrlimit(2) do not give an acceptable level of
protection because they cover only small fraction of resources
and work on a per-process basis. Per-process accounting doesn't
prevent malicious users from spawning a lot of
resource-consuming processes.

Although the main use of this patch is accounting and limiting
the amount of resources consumed by processes of each user, it
may be used for control of resource use by any group of
processes with the common "luid". "luid" is assigned to
unaccounted processes (only) and is inherited over fork.

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page2

2. General architecture principles

User beancounter patch modifies the core parts of the kernel
(like virtual to physical address translation code) and, thus,
should be compact and efficient as much as possible. Some
functionality and system administrator convenience have been
sacrificing to achieve this compactness and efficiency.

All accounting and limiting is provided on a per-luid basis. Luid is
assigned by setluid system call and is inherited over fork
Once being assigned to a process, it cannot be revoked or
changed in the future. When process creates new objects
consuming resources (like new processes, struct file, and so
on) these objects also grab a reference to luid of the process and
used resources are accounted. Thus, objects do not change their
luid reference and cannot get the reference at the middle of their
existence. Such an architecture simplifies things a lot.

Resource use limits are just limits, and do not provide
"wait-until-available" functionality. The limits are organized as
two thresholds. The exact meaning of these thresholds is
resource-specific. In general, after reaching the first threshold
creation of new resource consuming objects is denied, and the
system tries to inform applications about resource shortage
gracefully. The second threshold is the upper bound for the
resource consumption, which is maintained even by means of
abrupt killing of the offending process.

To clarify this policy let's consider the limit for unswappable
memory. When the first threshold is reached, the subsequent
fork, mlock and other calls start to fail. The application should
handle these failures and correctly terminate its work. When the
second threshold is reached, all accounted kernel memory
allocations will fail for this process. Such allocation may happen
inside, for example, page fault handler which creates memory
images of mapped files under normal circumstances. In the case
of reaching the "hard" limit the kernel cannot notify the
application and does not have other choice than to kill it.

3. Current status

The initial version of this patch was developed by Alan Cox and
Andrey Savochkin for early 2.2 kernels after some discussion over
linux-kernel mailing list. The current maintainer is Andrey
Savochkin.

The last version accounted for the following resources:

Unswappable kernel memory size including struct task, page
directories, etc.
mlock'ed pages.
Address space size in pages.
Total size of SysV IPC SHM segments created by user.

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page3

Total size of shared anonymous memory segments created by
user.
Number of processes.
Resident pages (no upper limits, the number is used for
swap-out guarantee).
Number of sockets.
Number of file locks.
Number of pseudo terminals.
Number of siginfo structures.

The really important resources are unswappable memory, IPC
SHM segment size, and number of processes. Other resources are
rather auxiliary.

Unswappable memory is a resource consumed by applications
indirectly. Unswappable memory areas are created on fork call
(different internal kernel structures like struct task), on
memory management calls (page directories for virtual to
physical address translation), and so on. Certain call patterns
may lead to all available physical memory being occupied by this
kind of data, and the inability to free enough physical memory by
swapping out or any other means. The patch provides the basic
protection, which needs to be extended by accounting of more
sources of unswappable memory allocations.

IPC SHM segment size is another resource where user
beancounter patch provides the efficient protection against IPC
abuses and denial-of-service attacks. IPC SHM API has several
defects, one of which is the rejection of automatic garbage
collection. Automatic garbage collector keeps reference counters
for objects and release the resource when the object becomes
unreferenced. Such a garbage collection exists for files, for
example. However, IPC SHM API requires explicit deletion of SHM
segments. Such a deletion may be accidently or deliberately
omitted, which leads to memory waste. Creating a lot of SHM
segments without their deletion may also work as a
denial-of-service attack.

Number of processes is limited on IA32 architecture. This limit
exists because each process requires a GDT entry, number of
which is limited by CPU architecture. GDT entry limit is the main
reason for accounting and limiting for the number of processes
run by each user.

Other accounted quantities do not correspond to exhaustible
resources directly. For example, the number of mlock'ed pages is
included into accounting of number of unswappable pages.
However, administrators may wish to set the unswappable page
limit to large values to allow users to spawn a lot of processes.
In this case the administrator may limit the users' ability to
mlock pages to prevent abuses of the high unswappable memory
limits.

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page4

4. Comments about individual resources

4.1 Control for virtual space and resident pages

The basics of the approach are described here. I'm drafting the
more detailed description and will publish it when it's ready.

4.2 Accounting for resources consumed by sockets

Current code does:

1. account the number of sockets;
2. account memory used by receive and send buffers.

Memory is charged for the socket at the moment of its creation.
It would definitely be better to charge the actual used memory,
but in this case I don't see a way to properly implement limits on
this memory. Dropping received packets and returning error for
locally originated ones isn't an acceptable variant. Sleeping
semantics of limits (wait until the quota allows queueing more
packets) can't be applied to external packets and leads to nasty
user-space deadlocks for local ones.

The places of the accounting hooks are:

struct socket gets reference to beancounter (from
current->login_bc) in sock_alloc;
the memory is charged to the beancounter before sk_alloc
call from protocol family specific creation routines;
upon struct sock creation it gets beancounter reference, and
the amount of charged memory is stored in the structure;
sk_free uncharges the memory and drops the reference to the
beancounter;
setsockopt calls charge the difference in the socket buffer
size.

5. Development plans

First of all, the summary of control of finite resources. There are

1. really exhaustible resources: number of processes,
unswappable kernel memory associated with user's processes,
TCP and UDP ports (limited to 2^16 by protocol).

2. bandaids, like limit for total size of SysV IPC shared memory
segments.

3. helper limits to catch process misbehavior earlier: limit on
number of sockets, number of locks, virtual address space
size. Although the excessive number of locks, for example,
may do a direct harm (by slowing down lookups), the main
point of concern is the amount of occupied memory, which is

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page5

3. accounted together with the number. So, accounting of
resources from the third group is considered only as a helper.

At this moment almost all (except TCP and UDP ports) obvious
exhaustible resources are under control. But we may not be sure
that all possibitilities for denial-of-service attacks are closed.
From theoretic point of view, it would be better to ensure that
each non-trivial operation, each kmalloc is charged. In practice,
it's impossible. There are a lot of places where the subject the
resource should be charged to isn't obvious (not current!), or
where the limit can't be enforced. Socket buffer accounting (
Sockets section) is a clear example of such a situation. So, the
only possible way here is to spot suspicious places in the kernel
and add resource control calls suitable for them. Certainly,
comments and patches are welcome!

Administrators should also be given a way to implement some
policy and to control memory management (i.e. how processes
share the pagable memory, page cache, and how swap-out
works), then, disk bandwidth, and so on. These matters are to be
considered in the future.

6. API

This section describes user beancounter API for applications.

6.1 Calls

There is a well-known conflict between kernel and libc header
files. The prototypes of the system calls below are presented as
they may be used for making direct calls, without libc
modifications.

long sys_getluid(void);

Returns the luid of the process. Returns error (ENOENT currently,
please suggest the better code) if luid hasn't been assigned to
this process yet.

Beware: this call (and all consequent ones) fail if the
beancounter feature isn't compiled into the kernel. Do not make
unreasonable assumptions that the call always succeeds or what
error codes you may get in return.

long sys_setluid(uid_t uid);

Set luid of the process. The call succeeds only for privileged
processes (CAP_SETUID currently) and only if luid hasn't been
assigned to this process yet. Returns 0 on success. Documented
error codes are EPERM and EINVAL.

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page6

long sys_setublimit(uid_t uid, unsigned long resource,
struct rlimit *rlim);

Set resource limit number resource for luid uid. Returns 0 on
success. Documented error codes are EPERM and EINVAL. The
operation is privileged and requires CAP_SYS_RESOURCE
capability. Currently, if the given luid hasn't been assigned to
living process, the call fails with EINVAL.

6.2 Constants

The following constants are defined in linux/beancounter.h
this moment.

#define UB_KMEMSIZE 0
#define UB_LOCKEDPAGES 1
#define UB_TOTVMPAGES 2
#define UB_SHMPAGES 3
#define UB_ZSHMPAGES 4
#define UB_NUMPROC 5
#define UB_RESPAGES 6
#define UB_SPCGUARPAGES 7
#define UB_OOMGUARPAGES 8
#define UB_NUMSOCK 9
#define UB_NUMFLOCK 10
#define UB_NUMPTY 11
#define UB_NUMSIGINFO 12

Their meaning is briefly described in section Current Status.

6.3 How to form a piece of code dealing with resource limits

A short example:

#include <linux/unistd.h>
#include <linux/resource.h>
#include <linux/beancounter.h>

static _syscall0(long, getpid);
static _syscall1(long, setluid, uid_t, uid);
static _syscall3(long, setublimit, uid_t, uid,
unsigned long, resource, struct rlimit *, rlim);

void f(void)
{
struct rlimit rlim;
setluid(500);
rlim.rlim_cur = 4;
rlim.rlim_max = 4;
setublimit(getpid(), UB_NUMPROC, &r);
}

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

ASPLinux | DOWNLOAD Page7

Libc doesn't have wrappers to newly created system calls. So,
the code should make system calls directly.

To do it the code should include linux/unistd.h header.
Unfortunately, libc and kernel headers cannot safely be included
from the same C file. In most cases, it leads to an enormous
amount of compilation errors. But even if the code compiles,
there may be more subtle problems (different data sizes, for
example). So, the C file dealing with system calls directly should
not include any of libc headers. It's possible to use libc calls from
the file if you understand what you are doing, but I personally
prefer to avoid it. It's better to keep a small file which performs
system calls and does nothing else.

7. Testing the patch

The current version of the patch is available from
http://www.asplinux.com.sg/install/user_beancounter-IV-current
It is against 2.4.0-test1 kernel. The patch introduces two new
kernel configuration options: CONFIG_USER_RESOURCE and
CONFIG_USER_RESOURCE_PROC. The first one enables user
beancounter functionality, and the second provides information
about used resources and limits through
/proc/user_beancounters.

There is a small program to play with the patch:
http://www.asplinux.com.sg/install/ulim4.c. It takes the resource
number and it's "soft" and "hard" limits as arguments and starts
/bin/bash (check include/linux/beancounter.h for resource
numbers). All child processes of the started shell will have the
same luid (i.e. belong to a single accounting group). Watch
resource use through /proc and try to overpass the limits!

8. Credits

Thanks to Marcelo Tosatti, Andrey Moruga, Vlad Bolkhovitin,
Alexey Raschepkin for contributions to the patch.

$Id: UserBeancounter.sgml,v 1.7 2000/07/31 02:26:02
saw Exp $

Copyright 2000 SWsoft Pte.Ltd. All rights reserved.
E-mail: info@asp-linux.com Tel: +65 220 0306

 Prev Next Random Join List

http://www.asplinux.ru/en/install/ubpatch.shtml 5.24.55 25/08/00

